Example 7.6:
iii) Comate $\int \arcsin x d x,(-1<x<1)$.

$$
\int \arcsin x d x=x \arcsin x-\int x \arcsin x .
$$

Now

$$
\begin{aligned}
& \int x d \arcsin x
\end{aligned}=\int \frac{x}{\sqrt{1-x^{2}}} d x .
$$

therefore

$$
\int \arcsin x d x=x \arcsin x+\sqrt{1-x^{2}}
$$

Another method to compute $\int x$ daresinx is to do the substitution $t=\arcsin x$:

$$
\begin{aligned}
\int x d \arcsin x & =\int \sin t d t=-\cos t \\
& =-\sqrt{1-\sin ^{2} t}=-\sqrt{1-x^{2}}
\end{aligned}
$$

(We have cost $\geqslant 0$, as $-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$)
iv) Let $t \neq 0$ be a real parameter. Applying partial integration twice, we obtain

$$
\int e^{t x} \sin x d x=\frac{1}{t} e^{t x} \sin x-\frac{1}{t} \int e^{t x} \cos x d x
$$

$$
=\frac{1}{t} e^{t x} \sin x-\frac{1}{t^{2}} e^{t x} \cos x-\frac{1}{t^{2}} \int e^{t x} \sin x d x
$$

Solving for $\int e^{t x} \sin x d x$, we obtain

$$
\int e^{t x} \sin x d x=\frac{e^{t x}}{1+t^{2}}(t \sin x-\cos x)
$$

Example 7.7:
Using partial integration, one can often derive recursion formulas for integrals depending an an integer number.
i) Consider for $m \geqslant 1$ the integral

$$
I_{m}:=\int \frac{d x}{\left(1+x^{2}\right)^{m}}
$$

Partial integration gives

$$
\begin{aligned}
\int \frac{1}{\left(1+x^{2}\right)^{m}} d x & =\frac{x}{\left(1+x^{2}\right)^{m}}-\int x d\left(\frac{1}{\left(1+x^{2}\right)^{m}}\right) \\
& =\frac{x}{\left(1+x^{2}\right)^{m}}+2 m \int \frac{x^{2}}{\left(1+x^{2}\right)^{m+1}} d x \\
& =\frac{x}{\left(1+x^{2}\right)^{m}}+2 m \int \frac{d x}{\left(1+x^{2}\right)^{m}}-2 m \int \frac{d x}{\left(1+x^{2}\right)^{m+1}} \\
\Rightarrow 2 m I_{m+1} & =(2 m-1) I_{m}+\frac{x}{\left(1+x^{2}\right)^{m}}
\end{aligned}
$$

As $I_{1}=\arctan x$, ane can deduce from this all In for $m \geqslant 1$. In particular, one obtains

$$
\int \frac{d x}{\left(1+x^{2}\right)^{2}}=\frac{1}{2}\left(\arctan x+\frac{x}{1+x^{2}}\right)
$$

which ane can verify by differentiating the right-hand side.
ii) Consider now the integrals

$$
I_{m}:=\int \sin ^{m} x d x
$$

Partial integration gives for $m \geq 2$

$$
\begin{aligned}
I_{m} & =-\int \sin ^{m-1} x d \cos x \\
& =-\cos x \sin ^{m-1} x+(m-1) \int \cos ^{2} x \sin ^{m-2} x d x \\
& =-\cos x \sin ^{m-1} x+(m-1) \int\left(1-\sin ^{2} x\right) \sin ^{m-2} x d x \\
& =-\cos x \sin ^{m-1} x+(m-1) I_{m-2}-(m-1) I_{m}
\end{aligned}
$$

Solving this equation for In gives

$$
I_{m}=-\frac{1}{m} \cos x \sin ^{m-1} x+\frac{m-1}{m} I_{m-2}
$$

As $I_{0}=\int \sin ^{0} x d x=x, I_{1}=\int \sin x d x=-\cos x$,
are can this way compute all In recursively.
iii) Now let us look at the following definite integral

$$
A_{m}:=\int_{0}^{\pi / 2} \sin ^{m} x d x
$$

We have $A_{0}=\frac{\pi}{2}, A_{1}=1$ and

$$
A_{m}=\frac{m-1}{m} A_{m-2} \text {, for } m \geqslant 2
$$

One obtains

$$
\begin{aligned}
& A_{2 n}=\frac{(2 n-1)(2 n-3) \cdot \ldots \cdot 3 \cdot 1}{2 n \cdot(2 n-2) \cdot \ldots \cdot 4 \cdot 2} \cdot \frac{\pi}{2}, \\
& A_{2 n+1}=\frac{2 n \cdot(2 n-2) \cdot \ldots \cdot 4 \cdot 2}{(2 n+1) \cdot(2 n-1) \cdots \cdot 5 \cdot 3}
\end{aligned}
$$

One direct application of this is Wallis' product representation for π :
Proposition 7.13 :

$$
\frac{\pi}{2}=\prod_{n=1}^{\infty} \frac{4 n^{2}}{4 n^{2}-1}
$$

Proof:
As $\sin ^{2 n+2} x \leqslant \sin ^{2 n+1} x \leqslant \sin ^{2 n} x$ for $x \in\left[0, \frac{\pi}{2}\right]$, we have $A_{2 n+2} \leq A_{2 n+1} \leq A_{2 n}$.

As $\lim _{n \rightarrow \infty} \frac{A_{2 n+2}}{A_{2 n}}=\lim _{n \rightarrow \infty} \frac{2 n+1}{2 n+2}=1$,
we also have $\lim _{n \rightarrow \infty} \frac{A_{2 n+1}}{A_{2 n}}=1$.
On the other hand, we know from Example 7.7. iii):

$$
\begin{aligned}
\frac{A_{2 n+1}}{A_{2 n}} & =\frac{2 n \cdot 2 n \cdot \cdots \cdot 4 \cdot 2 \cdot 2}{(2 n+1)(2 n-1) \cdots-3 \cdot 3 \cdot 1} \cdot \frac{2}{\pi} \\
& =\prod_{k=1}^{n} \frac{4 k^{2}}{4 k^{2}-1} \cdot \frac{2}{\pi} .
\end{aligned}
$$

Taking the limit $n \rightarrow \infty$ gives the claim.
Remark 7.4:
Wallis' product is not well-suited for practical computations of π as it converges rather slowly. Far example,

$$
\prod_{n=1}^{1000} \frac{4 n^{2}}{4 n^{2}-1}=1.57040 \cdots
$$

which compared with the exact value

$$
\frac{\pi}{2}=1.5707963 \ldots
$$

is still imprecise.

Proposition 7.14 (Riemann's Lemma):
Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuously differentiable function. For $k \in \mathbb{R}$ let

$$
F(k):=\int_{a}^{b} f(x) \sin k x d x
$$

Then $\lim _{|k| \rightarrow \infty} F(k)=0$.
Proof:
For $K \neq 0$ we obtain through partial integration

$$
F(k)=-\left.f(x) \frac{\cos k x}{k}\right|_{a} ^{b}+\frac{1}{k} \int_{a}^{b} f^{\prime}(x) \cos k x d x
$$

As f and f^{\prime} are continuous on $[a, b]$ there exists a constant $M \geqslant 0$, sit.

$$
|f(x)| \leqslant M, \text { and }\left|f^{\prime}(x)\right| \leq M \text { for } x \in[a, b] \text {. }
$$

From this we obtain

$$
|F(k)| \leq \frac{2 M}{|k|}+\frac{M(b-a)}{|k|}
$$

from which the claim follows.
Note: The Riemann-Jemma is also valid if f is only R-integrable (leave as exercise)

Example 7.8:
As an example of Prop. 7.14 we show

$$
\sum_{k=1}^{\infty} \frac{\sin k x}{k}=\frac{\pi-x}{2} \text { for } 0<x<2 \pi \text {. }
$$

Proof:
As $\int_{\pi}^{x} \cos k t d t=\frac{\sin k t}{k}$ and

$$
\sum_{k=1}^{n} \cos k t=\frac{\sin \left(n+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t}-\frac{1}{2}
$$

we obtain

$$
\sum_{k=1}^{n} \frac{\sin k x}{k}=\int_{\pi}^{x} \frac{\sin \left(n+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t} d t-\frac{1}{2}(x-\pi)
$$

Prop. 7.14 then gives for

$$
F_{n}(x):=\int_{\pi}^{x} \frac{1}{2 \sin \frac{1}{2} t} \sin \left(n+\frac{1}{2}\right) t d t,(0<x<2 \pi)
$$

that $\lim _{n \rightarrow \infty} F_{n}(x)=0$. From this the claim follows.
Note:
If we insert $x=\frac{\pi}{2}$ into this formula, we get

$$
\frac{\pi}{4}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11} \pm \ldots
$$

Proposition 7.15 (Trapeze rule):
Let $f:[0,1] \rightarrow \mathbb{R}$ be a twice contiunously differentiable function. Then

$$
\int_{0}^{1} f(x) d x=\frac{1}{2}(f(0)+f(1))-R
$$

where the remainder R is

$$
R=\frac{1}{2} \int_{0}^{1} x(1-x) f^{\prime \prime}(x) d x=\frac{1}{12} f^{\prime \prime}(\xi)
$$

for some $\} \in[0,1]$.
Proof:
Let $\varphi(x):=\frac{1}{2} x(1-x)$. We have $\varphi^{\prime}(x)=\frac{1}{2}-x$ and $\varphi^{\prime \prime}(x)=-1$. Partially integrating twice gives

$$
\begin{aligned}
R & =\int_{0}^{1} \varphi(x) f^{\prime \prime}(x) d x=\left.\varphi(x) f^{\prime}(x)\right|_{0} ^{\prime}-\int_{0}^{1} \varphi^{\prime}(x) f^{\prime}(x) d x \\
& =-\left.\varphi^{\prime}(x) f(x)\right|_{0} ^{1}+\int_{0}^{1} \varphi^{\prime \prime}(x) f(x) d x \\
& =\frac{1}{2}(f(0)+f(1))-\int_{0}^{1} f(x) d x
\end{aligned}
$$

On the other hand, are can apply the mean value theorem (as $\varphi(x) \geqslant 0 \quad \forall x \in[0,1]$) and obtains for some $\xi \in[0,1]$:

$$
R=\int_{0}^{1} \varphi(x) f^{\prime \prime}(x) d x=f^{\prime \prime}(\xi) \int_{0}^{1} \varphi(x) d x=\frac{1}{12} f^{\prime \prime}(\xi)
$$

Remark 7.5:
The name trapeze-rule is due to the fact that the expression $\frac{1}{2}(f(0)+f(1))$ for positive f describes the area of a trapeze with vertices $(0,0),(1,0),(0, f(0))$ and $(1, f(1))$:

One also sees from the above figure why the remainder $-\frac{1}{12} f^{\prime \prime}(\xi)$ is accompanied by a minus sign: for a convex function ($f^{\prime \prime} \geqslant 0$) the area of the trapeze is bigger than the integral (area under the curve).

Corollary 7.1:
Let $f:[a, b] \rightarrow \mathbb{R}$ be twice continuously differentiable function and

$$
K:=\sup \left\{\left|f^{\prime \prime}(x)\right| \mid x \in[a, b]\right\} .
$$

Let $n \geqslant 1$ be a natural number and $h:=\frac{b-a}{n}$.
Then we have

$$
\int_{a}^{b} f(x) d x=\left(\frac{1}{2} f(a)+\sum_{i=1}^{n-1} f(a+2 h)+\frac{1}{2} f(b)\right) h+R
$$

with $|R| \leq \frac{K}{12}(b-a) h^{2}$.
Proof:
Changing variables, one obtains

$$
\begin{aligned}
\int_{a+2 h}^{a+(v+1) h} f(x) d x= & \frac{h}{2}(f(a+2 h)+f(a+(2+1) h)) \\
& -\frac{h^{3}}{12} f^{\prime \prime}(\xi)
\end{aligned}
$$

(Perform substitution $x \mapsto h x$ in Prop. 7.15:

$$
\left.\int_{0}^{4} f(x) d x=\int_{0}^{1} h f\left(h_{x}\right) d x=\frac{h}{2}(f(0)+f(4))-\frac{h}{12} f^{\prime \prime}(\xi) h^{2}\right)
$$

with $\} \in[a+2 h, a+(v+1) h]$. Summation over v then gives the claim.

Remark 7.6:
If takes $n \rightarrow \infty$, the error \mathbb{R} goes to 0 . This is due to the factor h^{2} in the remainder term. The precision is four times accurate if the number of division points is doubled.
Example 7.9:
i) Use the trapezoidal rule to approximate the integral $\int_{1}^{2} \frac{1}{x} d x$:
We choose $n=5, a=1, b=2$

$$
\Rightarrow h=\frac{(2-1)}{5}=0.2
$$

Thus the trapezoid rule gives

$$
\begin{aligned}
\int_{1}^{2} \frac{1}{x} d x \approx & \frac{0.2}{2}[f(1)+2 f(1.2)+2 f(1.4)+2 f(1.6) \\
& +2 f(1.8)+f(2)] \\
= & 0.1\left(1+\frac{2}{1.2}+\frac{2}{1.4}+\frac{2}{1.6}+\frac{2}{1.8}+\frac{1}{2}\right) \\
\approx & 0.695635
\end{aligned}
$$

The exact result is:

$$
\int_{1}^{2} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{2}=\ln 2=0.693147 \ldots
$$

ii) The continuous function $f(x)=e^{x^{2}}$ is R-integrable over each interval $[a, b]$, but the indefinite integral is not known! We evaluate here the integral $\int_{0}^{1} e^{x^{2}} d x$ using the trapezoidal rule:
Choose $u=10, a=0, b=1 \Rightarrow h=\frac{1}{10}=0.1$
Thus $\int_{0}^{1} e^{x^{2}} d x \approx \frac{h}{2}(f(0)+2 f(0.1)+2 f(0.2)+\cdots$

$$
\begin{aligned}
& \cdots+2 f(0.9)+f(1)) \\
\approx & 1.460393
\end{aligned}
$$

